
Object Recognition using Template Matching

Nikhil Gupta, Rahul Gupta, Amardeep Singh, Matt Wytock

December 12, 2008

1 Introduction

Object Recognition is inherently a hard problem in
computer vision. Current standard object recogni-
tion techniques require small training data sets of
images and apply sophisticated algorithms. These
methods tend to perform poorly because the small
data set does not reflect the true distribution (selec-
tion bias).

Recently, Torralba et al [1] have proposed to de-
velop a large data set of images (80 million images)
and apply simple algorithms for object recognition.
Their method performs relatively well for some cer-
tain classes of objects. Nevertheless, their data sets
require very large storage and are noisy.

In this project, we develop precise 3D models of
objects and use these to apply simple learning al-
gorithms for object recognition. Three dimensional
models have the advantage that they are more com-
pressed than individual images. Thus this allows
training large scale object recognition algorithms. We
hope to prove that by applying a simple learning al-
gorithm, namely template matching, we are able to
achieve strong performance in recognizing objects.

In order to focus our efforts, we are concerned only
with the classification task: given an image does it
or does it not contain the target object? This task is
the focus of much research in computer vision and in
this report we will compare our results to the state
of the art from the PASCAL Visual Object Classes
(VOC) Challenge, 2007 [3]. Further, we chose cars as
objects to detect as detecting cars in images is a gen-
eral problem, and we could make accurate 3D models
of the cars ourselves using scaled diecast models.

This report is organized as follows. Section 2 de-
tails how we created the 3D car models. Section 3
provides details of basic approach we followed. Sec-
tion 4 and 5 give experimental results along with
some other variations of our approach. Section 6
details an alternate K-means based approach to the
problem. Finally, section 7 concludes the report.

2 Building 3D models

An important aspect of our project is the accurate
construction of a 3D model of our target object. To
this end, we acquired 6 high quality diecast car mod-
els [7]. These models are accurate replicas of real
cars at an 18:1 ratio. We chose cars representative
of the general distribution of car models on the road.
3D models of the car models were built using the
NextEngine 3D laser scanner [8] in the Stanford AI
lab. This process turned out to be more challenging
and time consuming than initially anticipated. Often
multiple scans had to be taken for the cars as they
have very shiny surface, often requiring a coat with
powder so as to make their surfaces less reflective.
Also, some areas were still missed in the built model,
and required multiple scans to be able to build an
accurate 3D model.

3 Template matching with 3D
models

Once we have acquired a 3D model, we need a method
to match it to a target images. We build on the simple
template matching techniques described by Le et al
[2]. This is our method of matching a 3D model to a
target image I:

1. Using the 3D model, generate a 2D projection at
some pose (φ, ψ, θ) and scale (z). This will be
the template image, T .

2. Convert T and I to grayscale, if necessary.

3. Apply a Gaussian blurring filter to T and I.

4. Apply Canny edge detection to T and I.

5. Apply another Gaussian filter to T and I.

6. Find best match in I for T using template match-
ing and normalized sum of squares difference dif-
ference metric.

1



The goal of the gaussian filters and the edge detec-
tion is to provide invariance to changes in color and
slight changes in structure and rotation while main-
taining a general representation of the object struc-
ture from the 3D model. The parameters of the gaus-
sian filters and canny edge detection are parameters
of the method that we tuned by hand to give the best
performance on our datasets.

In Step (1) there is an infinite space of 2D pro-
jections that can be generated from the 3D model.
In fact, it is a strength of our approach that our
3D model is a complete representation of the object.
However, in practice, naively iterating over all poses
and scales and generating a 2D projection in ths fash-
ion is computationally expensive. Therefore, for the
purposes of this project, we restrict our attention to
a limited set of poses.

3.1 Template score dependence on
size

One phenemenon that we observed when compar-
ing scores from template matching is that there is
a strong correlation between the score of the tem-
plate and its size. Considering the normalized sum of
square differences scoring function that we are using
to compare the template T and the image I:

∑
i

∑
j(T (i, j)− I(x+ i, y + j))2

(
∑

i

∑
j T (i, j)2)(

∑
i

∑
j I(x+ i, y + j)2)

When template size approaches 0, the score also
decreases toward 0 as the minimization problem be-
comes easier. For example, a template of size 1 is very
likely to find its exact match in the image. We ob-
served this empirically, see figure 1. Note that there
are other scoring functions used for image comparison
when template matching, such as cross correlation,
but they all have this same property.

An interesting question that arises, therefore, is to
define the optimal loss function for comparing tem-
plates of different sizes. We did not derive such a
function as part of this project, however it is our in-
tuition that the loss function should be based on the
premise that a random template of size M and a ran-
dom template of size N (M >> N) should have ap-
proximately the same score when template matching
against a given image I.

100% 25%
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SS
D

Template size

 

 
car
no car

Figure 1: The same template T , scaled to different
sizes and compared to image I.

3.2 Parametric model based on tem-
plate matching

As discussed above, its unclear how to compare tem-
plate matches of different sizes. Furthermore, we
want to match templates showing the target object
at different 2D rotations. Therefore, we pose a su-
pervised learning problem in which the output space
Y = {0, 1} represents “car” or “not car” and the in-
put feature vector X = {x1, ..., xn} is composed of
our scores from template matching. The dimension-
ality of the feature vector will be equal to M x N x K,
where M is the number of models, N is the number
of poses and K is the number of scales.

Based on figure 1, it is our intuitive sense that pos-
itive examples should be differentiated from negative
examples by an inflection point (local minimum) that
represents a good match at a given scale. Whereas
negative examples should have scores that decrease
monotonically as the template size decreases.

4 Easy data set: 2 poses, single
scale

The first data set that we attempted to classify was
from the UIUC Image Database [4] for car detection.
It contains 1,050 labeled examples of car side views
(550 positive, 500 negative) at a single scale. We
partitioned these examples randomly into a training
set (90%) and a test set (10%).

In order to match our 3D model to this set, we

2



used 1 model, with 2 poses and 15 scales to generate
30 features. We then performed logistic regression
on these features to find their optimal weights. Our
results on this simplistic data set were good, achiev-
ing an average precision (AP) of 0.93. However, a
simpler approach using nearest neighbor achieved a
better AP of 0.99.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

isi
on

 

 
NN
TM

Figure 2: Easy data set: (a) example image (b) PR
curves for nearest neighbor and template matching

4.1 Feature analysis

To better understand how our features represent our
data, we use the forward search feature selection al-
gorithm to determine the most important features
(see figure 3). The top 10 features chosen by forward
search are: 4, 7, 1, 2, 11, 6, 10, 3, 30, 13.

By visual check, feature 4 corresponds to the scale
of the model most closely matching that of the cars in
the target images. Therefore, it makes sense that it
is the most discriminative single feature since images
which match the properly scaled model template well
are most likely car images.

In this example, features 1-15 come from pose 1
and features 16-30 come from pose 2. It is somewhat

surprising that the first pose 2 feature is selected at
9th in the list. This leads us to believe that adding
additional poses does not help as much as we initially
anticipated. One possible reason for this is that after
running blurring and edge detection the most dom-
inant remaining feature of both poses is the wheels
which happen to look roughly the same since the two
poses are both side views.

It is also interesting to note that the optimal
weighting found by logistic regression corresponds to
our intuitive notion of applying a differential function
on the feature vectors.

0 5 10 15 20 25 30 35
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Number of features

Ac
cu

ra
cy

0 5 10 15 20 25 30 35
−40

−30

−20

−10

0

10

20

30

Figure 3: (a) Number of features vs. accuracy (b)
optimal weight vector

3



4.2 Comparison

We implemented the nearest neighbor algorithm for
classification by computing the sum of squares dis-
tance (SSD) between the test image and all training
images. Then, each of the 10 closest images con-
tributes one vote as to the class of the target image
(”car” or ”not car”). Normalizing these votes gives us
a score between 0 and 1, which we can use to compute
the precision and recall at different thresholds.

Nearest neighbor works well on this set because
the input images are homogeneous in terms of object
position color, position and scale. In this scenario,
a 3D model that can represent all of the different
poses and scales of a model provides little additional
value. Furthermore, our template matching routines
throw away significant information when doing edge
detection and blurring that is clearly used effectively
by nearest neighbor. Finally, our car model has a
slightly different structure than the older cars present
in the images, giving it a slight disadvantage.

5 Difficult data set: Many
poses, many scales

The next data set that we worked on was that from
the VOC 2007 Challenge [3]. This data set has cars
at all scales and poses as well as occluded cars and
non-traditional cars, such as the Hummer. They have
also pre-segmented the data into a training set and a
recommended validation set.

This dataset has labeled car examples split into
test, validation and training sets (50/25/25). Unlike
the previous data set, this set is skewed 80/20 toward
negative examples which means that accuracy is not a
good measure of performance. Instead we use average
precision (AP) which is the same measure used in the
challenge.

The best result from the challenge is AP of 0.78
while nearest neighbor gets AP of 0.20. Our template
matching approach scores 0.31.

5.1 Optimizing for average precision

Logistic regression minimizes the error between the
hypothesis and the training set. However, for the
VOC Challenge, the comparison metric is average
precision. AP is computed by iterating over recall
in 0.1 intervals and averaging the precision values.

We used cross validation with a forward search al-
gorithm and optimized for AP instead of generaliza-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 
TM (LR)
TM (SVM)
NN

Figure 4: Difficult data set: (a) example image (b)
PR curves for template matching with logistic regres-
sion (AP = 0.31), template matching with SVM (AP
= 0.29) and nearest neighbor (AP = 0.20)

tion error. The best AP achieved by forward search
on the validation set was 0.34. However, when we
used the feature set on the test set it hurt AP slightly.
This is not too surprising as the forward search algo-
rithm simplify observed variations in the feature set
that randomly improved performance on the valida-
tion set. These improvements did not generalize well
to the test set.

A related technique would to be to use cross vali-
dation with a regularization parameter but we could
not try this.

5.2 SVM

We also ran a SVM classifier over our feature set,
to compare the results we got by logistic regression.

4



We used the VOC dataset, and SVM Light [5], with
linear, polynominal and radial kernel. The parame-
ters for the SVM classifiers were hand tuned for good
results.

With a radial kernel, we got an AP of 0.29, which
was comparable, but lower, than what we got from lo-
gistic regression. The linear and polynomial kernels,
however, were not able to classifly any of the positive
test images correctly. This is because the optimal
function computed by SVM in these cases was such
that h(x(i)) < 0 for all i. This is optimal in terms
of accuracy but not optimal for the metrics we care
about: precision and recall.

6 Alternate approach: K-
means clustering

One of the issues with template matching approach is
the set of templates to provide to do the match. Here,
we used TA Graz-02 database which also provides
pixel masks for labelled cars. We ran k-means on
edge images of these extracted cars to divide them
into a small no. of clusters. Our hope was that this
would divide the set of cars into a representative set
of poses good for template matching.

We ran k-means to get a set of 28 representative
images. Then, template matching was run on a set
of cars and non-cars images from the same database.
This database is complex with cars in many orienta-
tions and sizes. With this approach, we got an AP of
0.74.

For comparison, we also ran nearest neighbor (AP
= 0.69) and template matching with 3D model im-
ages (AP = 0.73).

There were several difficulties we faced in k-means
approach, which require further work. One was a
good way to find distance between two images, es-
pecially as their aspect ratios differ. We used sum
of squares distance on the images resized to fit in a
400x400 square, maintaing their original aspect ratio
with empty parts padded with black pixels.

7 Conclusions

The problems we encountered can be categorized into
two areas: using the knowledge of the 3D model to
extract features from target images, and training the
parameters of the system to optimize for precision
and recall.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

 

 
TM (K−means)
TM (3D)
NN

Figure 5: PR curves for nearest neighbor (AP =
0.69), template matching with K-means (AP = 0.74)
and template matching with 3D model images (AP
= 0.73)

We used our 3D models in a very simple way – by
generating 2D projections of them. We then matched
the projections to target images. This raised numer-
ous questions, such as, how do you compare scores
from the matching of different templates? How effec-
tive is template matching edge images at recognizing
the target?

We showed that using the scores directly as fea-
tures in logistic regresison works reasonably well. We
also showed that even for difficult data sets template
matching with a small number of poses can be ef-
fective in recognizing cars. It remains to be seen if
simply using more poses will improve the accuracy of
the system. Adding more poses will cause the feature
vectors to grow considerably. Which in turn may also
require more thought as to what is the optimal way
to compare scores for template matching of differ-
ent poses and scales – a question we touched on only
briefly. Finally, adding more poses will push the lim-
its of what is computationally reasonable – a question
we did not consider as part of this project.

Optimizing for precision and recall, as opposed
to accuracy, has been studied before in machine
learning. Some examples include, SVMPerf [6] and
BHRM. We did not try these as part of this project,
but using such techniques would most likely improve
our scores on precision and recall significantly.

5



8 Acknowledgements

Quoc Le provided much guidance on this project, in-
cluding the idea of using 3D models plus template
matching to do object recognition. Quoc also recom-
mended comparing our results to nearest neighbor to
better understand the performance of our approach.

References

[1] A. Torralba, R. Fergus, W. T. Freeman. 80 million
tiny images: a large dataset for non-parametric
object and scene recognition. In press, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 2008.

[2] Quoc Le, Morgan Quigley and Andrew Y. Ng.
Visual Servoing by Template matching. (Unpub-
lished)

[3] The PASCAL Visual Object Classes Challenge
2007

[4] http://l2r.cs.uiuc.edu/~cogcomp/Data/Car

[5] http://svmlight.joachims.org

[6] http://svmlight.joachims.org/svm_perf.html

[7] http://www.diecastmodelswholesale.com

[8] https://www.nextengine.com

6


