

Shiniphy - Visual Data Mining of movie recommendations

Filip Gruvstad, Nikhil Gupta and Shireesh Agrawal

 Fig. 1. Shiniphy - Visualization & Interaction techniques highlighted in mockup

Abstract— An interactive visualization system for browsing results of a movie recommendation system is presented. The movie

recommendations are based on collaborative filtering data mining techniques on Netflix Challenge dataset. The visualization allows

for two way feedback, from the recommendation system to the user, and from the user to the system. The user can intuitively

change the results of recommendations over time. Dynamic querying filters are also provided.

Index Terms— visualization, data mining, interaction, collaborative filtering, recommendation system, feedback, Netflix challenge,

search visualization.

1 INTRODUCTION

There are many online recommendation systems, like
Netflix.com and Amazon’s similar-product recommendations, which
show top results of a data mining back end. They generate thousands
of recommendations, but are constrained to show only the top 3 or 4
out of them. Other sites like Jinni and Pandora have more interactive
and visually appealing results but these use datasets specifying the
genome of the song/film which are painstakingly made by hand.
Many a times these results are good, but they do not give any
feedback as to why a movie is being recommended. Also, a user has
no way of letting the site know that two movies do not seem related
to her.

We wanted to build a data mining system without going through
the painstaking process of building a genome. We finally built a
movie search and recommendation system which finds similar
movies to the movie being searched for using Netflix prize’s dataset
(something like Amazon's product recommendation system). This
system uses both user ratings and metadata from IMDb to give its
results. The visualization of the results enables the user to find out
more about the results, filter them by several parameters (such as
genre and production year). By having a strong data mining element
coupled with usable visualization techniques we can enable effective
and quick exploration of the results, by selectively boosting and
dropping scores based on user queries. This report will focus most of
its attention on the data visualization element.

One very interesting possibility is giving the user the possibility
to modify the results. Our system gives recommendations where the
best matches end up closest to some point, if the user does not agree
with this he/she can change it and the map is updated. Thus the
results of the data mining will improve over time. We also wanted

the user to be able to participate in the mining process and the system
to give feedback to the user why a certain movie was recommended
(were they by the same director?).

Our hope is that this system will make the users more interested
in watching movies and can help them find titles they have never
heard of.

1.1 Motivation

In the following paragraphs, we talk about problem visualizing large
data sets, data mining, why a visualization system would be helpful,
and how collaborative filtering (a type of data mining) can leverage
such visualizations for item-item recommendations to exploit the
“long tail”.

The exploration of large data sets is a difficult problem. Though
clever visualization techniques partly help to solve the problem, still
sometimes it is easier for humans to look at computed patterns and a
good visualization of the data to find more intricate patterns in the
data. Thus, involving the user in the data mining process by pre-
processing the data using simple statistical techniques and then
presenting the results to the user, visually, is a better idea. Integration
of interactive visualization and data mining algorithms combines the
intuitive power of the human mind with computational capabilities of
the computer, thus improving the quality and speed of the data
mining process. There is a company working towards this specific
goal Palantir.

In simple terms, data mining is the process of extracting
important relationships and patterns from large amounts of raw data.
For example, which two items are bought together the most (DVDs +
Popcorn? Then give some offer on the combo). It is used in a number

of different fields nowadays including marketing, detecting fraud and
in scientific discovery like bioinformatics. However, data mining is
not perfect, and many a times cannot beat human intuition.

Also, it is not easy for a poorly informed end user, who is not a
mathematician or computer scientist to interact with data mining
system parameters and get useful results. They might even get results
that are misleading or misinterpreted. Having a system which
indicates why a particular pattern is being shown, and what the
different parameters contributed towards that pattern would help the
end user a lot, and make the system much more usable. Other factors
like taking users' feedback in an intuitive manner and allowing for
dynamically querying of results would help to solve this problem a
lot.

A modified definition of Collaborative filtering (CF) from
Wikipedia is – it is a form of data mining system. The underlying
assumption of CF approach is that those who agreed in the past tend
to agree again in the future. It can produce personal
recommendations by computing the similarity between users or
items themselves, in a large set of data. It is the method of making
automatic predictions (filtering) about the interests of a user by
collecting taste information from many users (collaborating). For
Shiniphy, we concentrated on item-item based collaborative filtering
recommendation system.

Enabling the user to explore a substantial number of
recommendations quickly with dynamic filtering would allow a
service provider to exploit the “Long tail” that exists in their
products. “Long tail” suggests that 20% of the products account for
80% of the sales. The remaining 80% of the products ("non-hits" or
"long tail") account only for 20% of the sales, and it will be highly
beneficial for the service providers if users start buying more from
amongst the non-hits.

1.2 Related Work

In [6] the importance of having a visualization system for a data
mining system is described. In [4], an approach for getting online
data mining/CF is described, however, given the static data that we
have, we realized that having a “tunable” backend would be better.

The project that is most related to our work is [2] “Netflix Movie
Explorer”. It can show posters of movies related to a particular
keyboard. It is also based on the Netflix prize data set. However, it
does not provide any way of giving feedback to or receiving any
feedback from the system. There are several sites online that
recommend movies and music; some interesting examples are [12]-
[16]. They all use some kind of recommendation system coupled
with a visualization system. However, [13]-[16] lack do not give any
feedback to the user about why a particular item is being
recommended. Jinni [12] and Pandora [17] do that, but they use
metadata created by hand. (See Fig 2)

Fig. 2. Amazon and Jinni screenshots

1.3 Data Available

We got movie ratings from the Netflix dataset which contains over
100 million ratings (along with the data when the rating was given
ranging from Oct-98 to Dec-05) of 17770 movies by over 480,000
different users. Furthermore this data has information about when the
ratings are given and by which user. It does not however, contain any
data about the movies other than which year they are produced,
therefore we also chose to use IMDb’s extensive database to find

additional information like genre and director. Since we could not
find any publicly available dataset containing both Netflix and IMDb
data we had to try matching these by title somehow.

We ran some basic queries on it to get a better sense of what we
were dealing with. We observed that there was a long tail in where
we expected, like in the number of ratings per movie and the number
of ratings per user. This data set is interesting because there were
also some outliers in it, like 2 users who rated over 17,000 movies
each. We could have removed such extreme cases and pruned the
dataset to achieve incrementally better results, but we decided to
focus more on the algorithms to get rid of such cases. Matching
IMDb and Netflix titles turned out to be a difficult problem. We tried
several things to find as many title matches as possible. We start of
by doing some preprocessing like putting "The" at the end of a title.
We then use IMDb’s "also known as" aka-titles list (which contains
alternative titles for different movies). We removed the titles which
had fewer than 100 ratings (to improve quality and speed since the
aka list is very large). We then compared all the titles to the ones in
the Netflix list and replaced possible aka titles in it with what IMDb
perceived as an original. To compare titles we use Levenshtein
Distance (counts number of deletions, insertions, or substitutions
required to transform one string into another), length, year and some
homemade shingles like comparison to see how many pairs of letters
both strings contain. Then we compared this new list of titles with
the full list of movies from IMDb and kept the pairs found (making
sure the date is correct). This didn't give good enough results so we
figured Google might be able to help. We made a simple web
crawler that searches Google with site:www.imdb.com and all the
titles that where untouched by the above algorithm. It then chooses
the first result, scrapes it to get the date and other data and checks the
date and string comparing and if the result is favorable adds it to the
list. We got banned a couple of times for being a bot but got it to
work after some time. Once the titles were compared and ready, the
rest was easy. We finally were able to correlate around 70% of
Netflix and IMDb data.

For each of the 17,700 movies, we scraped an internet site to
fetch the posters using a Python script. However, again was a slow
process, as the server was again blocking us progressively. Finally
we received all the posters from the author of the Gflix [2] site,
Chaitanya Sai. We downloaded all the movie synopsis from the same
site using our own script.

2 METHODS

For this project many elements were needed. We have lots of data
must be accessed and processed quickly. We also have a demanding
visualization with many elements. As stated in [3] & [4], we
designed the system considering the following factors –
• It should be easy to implement and maintain, yet reasonably

accurate - We used a simple aggregation formula and class
architecture

• The schemes should not rely exclusively on batch processing of
data, so we stored good results of data mining in tables and
made use of them in aggregation of scores efficient at query
time: we used extra storage to speed up the execution type

2.1 Visualization

We considered many different options for the visualization that
would lend itself the best for such kind of a system. More
specifically, we considered a linear display, a graph-node tree
structure, and a radial display. We also considered different kinds of
encodings possible for different data in each of these visualizations,
in size, color, distance, width, length, angle, overlap etc.

We will now discuss the pros and cons of these different
approaches and our final choice.

A linear tree map display, with posters of different sizes binned
according to relevance of the result, somewhat like Jinni, is what we
wanted to build first. The biggest plus point of such a design is that
humans are very quick at assimilating linearly displayed information.

However, with this design, we soon realized that if the number of
related movies in a particular bin was more than the number we
could fit in, and then either we’d have to put those movies (wrongly)
in a smaller poster size bin, or show it on the next page. Both would
now be good, as we want the top results to be shown first and with
same size. Also, if the user changed any dynamic query parameter,
then the posters would not so pleasantly fly off in different
directions. In case of interactive feedback from the user, we could
not think of any simple way in which the user could tell the system
that two movies were not so related or more related. Jinni [12] uses a
linear treemap visualization, with poster size encoding the relevance
of a recommendation. However we found that this visualization is
not so effective for movie recommendation, as smaller posters are
difficult to see, and it is very distracting to see the posters change
size whenever any of the dynamic querying is applied.

Next we considered a graph node structure, however this has the
problem of wasting a lot of space, and drawing edges between
“movie” nodes might encode some good information (like same
year, or progression etc.) but it would not make sense intuitively to a
user. This visualization also suffered with the user feedback problem
discussed above. Musicovery [16] has a very interesting
visualization, but the placement of the different songs on screen and
their “relatedness” is not encoded in the visualization at all.

Finally, we decided that a radial display, with the movie searched
for at the center and recommended movies around it in a circle. Only
around 10-15 movies can be shown at a time, and this is by design,
as with anything more than this, the system looks too cluttered (and
specifically since this is not a linear display). Also, this would in a
way prompt the user to use the dynamic querying and feedback
facilities provided. The distance of a movie from center of the circle
encodes the similarity of the movie, so more similar movies are
closer to the center. This is normalized for the movies displayed, so
that the best recommendation is always at a fixed distance from the

center (this also ensures that if there are no good recommendations,
they stay on screen). The position of the posters is determined
algorithmically. So that they do not overlap. This makes taking
users’ feedback very easy, as they can just drag a recommendation
closer to the center to say it is more related (in a fuzzy way) and
farther away otherwise. (See Fig 3 & Fig 4)

Here are some other features implemented –
• Each movie can belong to multiple genres. For all the movies

shown on screen, top 5 genres and rating (on a 5 star scale) are
shown as icons along with the posters, this allows to quickly see
if a movie is in the genre the user is searching for. Total 28
genres available were binned into around 7 most popular
categories (like “Horror” was grouped with “Thriller”).

• We provide a quick statistic in microbars about the genres and
Year of release of all the recommendations along with dynamic
querying options on Year, Average rating of recommended
movies & Genre. Based on these statistics, it is very easy to
decide which year/genre the searched for movie belongs too,
and which year/genre the user currently wants to focus on (by
dynamic querying).

• Genre similarity search – this slider gives feedback to the data
mining system and changes the weight associated with the
“genre clustering” score contribution.

• To emphasize that movies closer to the center are more related,
concentric circular rings have been drawn around the center
with decreasing colour darkness.

• Dynamic querying interactively changes the results being
shown.

• Feedback from the system, that is why a movie is being
recommended is shown only on clicking an information button.
This pops out an info box with a synopsis and different
parameters that contributed to the movie being recommended.

Fig. 3. Screenshot – showing the visualization when user searched for a movie “Target”

• Two circular guide lines with some difference in their radius are
drawn statically to aid in determining the distance of a
recommendation from the center.

• Major “genre” matches are segregated and placed together with
the genre name written in bold in that area. This is redundant
encoding of the genre information.

• We chose not to use any other encodings in edges from center
to the nodes, poster size, border size etc. to keep the system
simple and non-cluttered.

2.1.1 Efficient poster placement strategy

Placing the posters efficiently on screen was an important task, so as
to allow effective usage of the screen space, while also allowing the
encoding of relatedness in radial proximity from center. First we
tried using a force directed layout kind of structure, with posters
bound to concentric circles and tangential forces placing them
separately from one another. However, this did not work out to be
that efficient, as FDL takes a lot of computational power on the
user’s machine, and also because it does not allow much algorithmic
control on certain parameters like group movies of similar genre
together. So we tried an algorithmic placement strategy, in which we
take around 100 movies and compute their theoretical radius (r) and
angle (theta) values. If a node is overlapping with some other one
already placed, then a simultaneous search commences in both the (r)
and the (theta) spaces. This gave us good results, and also allowed us
to group movies algorithmically, and consistently.

2.1.2 Workflow & Interaction

Interaction techniques implemented in the system include –
• User searches for a movie – auto complete happen on the fly.
• Selected movie shown at center of the visualization.

• Feedback from the system in the info box and the microbars,
and the distance from the center.

• Dynamic querying.
• User can drag and change radius of movie displayed to give

feedback to the system.
• User can say that two movies are not related at all by clicking

the close button for a particular recommendation.

2.2 Data mining

An item-item collaborative filtering recommendation system is a
“non-personalized” system as it doesn’t depend on the user profile.
For example all users (not logged on) browsing a product on
Amazon, web site see the same recommendations.

In simple terms, it works as follows (from [3]) – In effect, given
that the user is browsing item number 1, say, we are looking for
items with ID “itemID2” such then: a sufficient large number of
people (defined by a threshold) rated both item 1 and “itemID2” on
average, we want “itemID2” to be rated as high as possible among
users who also rated item 1.

Finding similar movies requires lots of preprocessing of the data.
Since this paper is more about visualization than about data mining,
we just give an overview of the data mining techniques used and
interested readers can read [18] for details of the data mining
implementation –

Residuals - Normalization technique to handle the inherent a user
to user variability in ratings, some users are harsher while giving
ratings, they’ll give a movie that they didn’t like a “1”, and some
users would give such movies a “3” rating.

Pearson Correlation score - It is a correlation score which
calculates a similarity score for any pair of movie based on how
common users have rated the two movies.

Fig. 4. Screenshot – Showing the feedback from the system in the infobox when user clicks on a particular movie

We ran code optimized for calculating the coefficient which
indexed the ratings both by user and by movie and allowed for fast in
memory lookups. We limited the size of the output file to around
50Mb by calculating the Pearson correlation only when the overlap
between two movies was over 50 movies, and clipped and kept the
coefficients above a value of 0.5 only (determined by hit and trial on
a smaller subset of the entire database). We did this because we
wanted our visualization to be interactive and having a larger table of
Pearson coefficients slowed down the querying too much. The
results for Pearson alone are fairly good. We checked for around 5
movies and could always see sequels in the result. There were cases
where for a given movie; one movie with very few users in common
had slightly higher correlation than correlation with other movie with
many more users in common. To boost results with more overlap
higher, we recalculated the similarity coefficient as = log(support) *
(Pearson coefficient).

Singular Value Decomposition – One of the most popular
techniques for the matrix factorization is singular value
decomposition or SVD. It decreases the dimensionality of the User X
Movie matrix greatly, with little loss of information. Inherently,
SVD rids us of noise and helps detecting the overall patterns in the
data and helps in characterization of the structure.

Clustering – Clustering is an easy way to make sense of high
dimensional data. It groups similar items together. We applied
clustering to a variety of different parameters which we then used to
boost the final recommendation score.
• We chose to cluster the SVD data because it was proving too

slow to load all of it from the SQL database. The results were
quite good, for example six out of eight Batman movies in the
set ended up in the same cluster when we had 28 clusters.

• We also clustered based on movies IMDb keywords. This data
is very sparse but still managed some interesting results like
grouping movies with similar themes, for example we found a
cluster where over 50% of the movies where about space. This
gave some good results, like all the sci-fi space related flicks
ended up in the same cluster.

• Finally we clustered on genres.

For the different parameters we try several different amounts of

clusters. This is useful for example if two movies are more closely
related then they will continue to end up in the same clusters as the
clusters get smaller. To do these things we used a clustering library
called Cluto which required some pre-processing of the data but was
then very easy to use. We tried different clustering methods and
distance functions; our final method of choice was k-1 bisections
with a cosine distance function, as this gave the best results
observed.

2.2.1 Blending the results

Blending multiple results is one of the biggest challenges of our
project. We have different parameters on which we can our match
and boost our scores. We finally used a linear combination of the
different parameters multiplied by weight for each parameter. This
would allow our visualization to easily interact with the backend
system and change the results, as the user wishes (suppose she wants
to see more famous movies, then we just boost the weight for the
parameter for movie support).

The parameters we have are:
• Clusters of different sizes based on Movie matrix (from SVD),

Genres and Keywords. If the two movies are in the same cluster
(genre, SVD, keyword) then boost its score. Boost more if they
co-occur in a more specific cluster (two movies in the same
cluster when we have 200 clusters are more important than
when we only have 10 clusters). SVD should be boosted higher
than the other two. The user should be able to decide how
important the genres are.

• Use the number of times the movie has been rated to boost up
the results for more famous movies. In a similar way, adjust the

Pearson score to account for the number of users in common
between two movies. A movie that has fewer common users
should be given a slightly lower weight.

• IMDb average rating and Netflix average rating. We divide the
ratings into different blocks of 0.5 from 1 to 1.5, 1.5 to 2.0 etc.
and boost the scores for higher rated movies higher (uniformly
in a particular block).

• Number of times a movie has been rated (support).
• For any Movie-Movie pair, the number of users in common

who rated both the movies (support).
• Year of release of the movie.
• User suggestions for any set of recommendations. Users can tell

the system that two movies are related to a higher degree or not
related at all. This data will be stored on a table in the backend
server with slow and incremental changes (so two movies do
not become unrelated when only one user says so, this will
happen only when a substantial number of users indicate the
same). This table will also be used to calculate the similarity
scores in future.

Based on the value of these different parameters, users can learn

why a particular movie was recommended to them and logic to
change the weights for these parameters can be easily implemented.
For example if we wanted the functionality to allow the user to
control that more popular movies (with higher number of ratings) are
shown higher up, then that is equivalent to providing a widget for
changing the weight of the relevant parameter used for calculating
the final similarity score.

2.3 System architecture

To make our visualization accessible and easy to use we want it to be
available online but it must also have access to a database and be
fast. Since our system needed to work interactively given any user’s
queries, we stored the results of the different techniques on a
MySQL server. As an intermediate step to the visualization we have
a Java server which handles the actual SQL queries, this is good
because Java is much faster than Flash. This also means that the
results of some SQL queries which are small and frequent can be
stored in memory on the Java server speeding things up further.

Fig. 5. System architecture

• On the front end we have a Flash/Flex based interface built
using the Flare visualization library.

• An interface middle level built in Java to interact with the
MySQL server. This level was needed since Flex does not allow
direct coupling with database. Also, having the interface in Java
allows for much faster interface with the SQL server.

• Backend MySQL server. This stores all the different results
tables and allows us to access the data from front end in an
efficient manner. Doing dynamic queries is much easier in this
matter, as one just has to play around intelligently with SQL
queries now.

• The frontend flash application is connected to the data stored in
the backed MySQL server via a Java server. This server
precaches lots of the information needed to recommend movies
and thus offloads the front end (which due to Flash is pretty
slow) and backend (where data resides on disk).

• The Flash application is connected to the middleware Java
server via XML sockets. From it, it gets sorted lists of
recommendations for which it then fetches movie posters,
ratings etc. Each search also comes with some common
statistics over common genres, ratings and production years.

These are visualized as icons and microbars using Flare, and
can be filtered upon using dynamic query sliders provided.

• Tools & Languages used: Java, Flash, MySQL, Flex, M/R
framework, Python, IMDbPy.

Fig. 6. The Java server – “Recommendator”

3 RESULTS

Visualizations should be judged in the context of use. We found it
difficult to judge the usability of this system ourselves, and even a
small user study could not be conducted due to time constraints.
Quantitative measures are difficult to estimate as we have not had
any such test. We will present a few quantitative parameters that we
could measure ourselves and informal user feedback that we could
gather.

3.1 Visualization - User feedback

We made some informal observations at the final poster presentation
day though, and present them over here –
• People had needed to be explained that radial proximity

indicated closeness.
• Also the concentric circles were difficult for users to see. But

we think it was because of: the screen angle and distance of the
laptop. Also, the time spent by users on this was quite less.

• We saw that once we explained the features to the user they
could easily understand it and found it useful.

• The few other users, who had issues understanding the system,
were mostly related to the data mining part of it. However we
feel that it was more out of curiosity about understanding the
system, and we have successfully abstracted the user from
knowing any details of data mining system and how it is
implemented.

• People suggested have to the ability to double click on a movie
poster to make it the search movie.

• People liked that we showed the genres on outer ring of (like
drama, action). They didn’t pay much attention to genre icons.
They also suggested that we should have more filters for future.

In all, the user feedback was that our visualization was effective

for the task at hand, and that it would decrease the time they needed
to find interesting (and not so well known) movies, and make it
easier for them to decide.

3.2 Visualization - Quantitative measures

The only quantitative measure that we measure effectively were
running times, as this is supposed to be an interactive visualization
system with three tier architecture, we needed the running time to be
fast. To get our system running is a three step process, in the first

step one needs to start the MySQL server, in the second the Java
server and finally the visualization front end. We observed that
MySQL started as soon as the server was rebooted, in around 1
minute, and the Java server took around 2 minutes to start and pre-
fetch the basic information in its memory. However, these two would
not need to be restarted in an ideal case, and the only time noticeable
to users would be the visualization time. We accessed the
visualization from two different PCs and observed that it never took
more than 4-5 seconds to load the movie information and all the
posters, so the visualization part is light weight, and uses minimal
resources. This is a good result, as this shows our success in making
the system close to real time, and providing a visual data mining
system.

3.3 Data mining results

We first present the results for different methods we tried and then
for the overall system –
• Clustering on basis of SVD was able to group related movies in

the same cluster, like 6 out of the 8 Batman movies were
clustered together.

• Keywords based clustering worked well too, while analyzing
the clusters, we observed that most of the sci-fi space related
movies (Star Trek, Star Wars etc) had clustered together.

• Pearson correlation worked well out of the box, for most of the
genre specific movies, it was able to give good
recommendations. It was also able to catch sequels without fail.

Again, it is a difficult task to evaluate something like movie

recommendations; some people might like the system’s
recommendations, others might not. It depends a lot on the person
actually using the system.
• We compared our results with Amazon’s movie

recommendations. (However, Amazon’s database has >>17,700
movies).

• We checked recommendations manually for movies from
Amazon.

• On an average 5/20 movies were common in the
recommendations by our system and by Amazon.

• There were cases where:
• Amazon was not able to make any recommendations for some

movies like “Khakee” (a not so well known Bollywood movie),
while our system did make good recommendations (Bollywood
movies in the same Genre).

• Most of the times both systems worked well, especially in
comedy and action genres (Ace Ventura, Terminator). We also
observed that Amazon weighs much more heavily on the Actor
and Director information, while we do not use this information
effectively yet.

Our system did not work well in case of a hugely popular movie
Titanic, and neither did Amazon’s (they recommended Forrest
Gump). This is probably because so many people watch the block
buster movies that they get grouped together (almost everyone we
know has watched both Titanic and Forrest Gump). However, our
visualization system can outperform Amazon in case the user selects
to see less a lesser known movie.

4 FUTURE WORK

There are several improvements that can be made to the system –
• One is to make use of other factors like actor, director and

others.
• It would be really interesting to apply our algorithm to a system

like the one of Jinni.com where every movie is couple with
extensive tagging.

• Trying out other layouts that use space more efficiently while
meeting our interaction needs would be important.

• We can also try encoding the state of the system in the URL so
that users can start over at the same point, or email
recommendations to their friends.

• Perform personalized recommendations (based on a particular
user’s profile). Also, save their preferences for different
parameters like genre similarity, average rating cutoff etc.

ACKNOWLEDGEMENTS

The authors wish to thank Professor Jeff Heer for helping them
brainstorm the idea and suggesting feedback techniques. They would
also like to thank Chaitanya Sai (Boston University) for providing
posters for all of the 17,700 movies.

REFERENCES

[1] Chris Anderson. “The Long Tail”. In Wired magazine, 2004.

[2] “Netflix Movie Explorer” - http://gflix.appspot.com

[3] Daniel Lemire, Sean McGrath. "Implementing a Rating-Based Item-to-

Item Recommender System in PHP/SQL"

[4] Daniel Lemire and Anna Maclachlan. “Slope one predictors for online

rating-based collaborative filtering”. In Proceedings of SIAM Data

Mining (SDM’05), 2005.

[5] Bruce W. Herr, Weimao Ke, Elisha Hardy & Katy Börner. “Movies and

Actors: Mapping the Internet Movie Database”. In Conference

Proceedings of 11th Annual Information Visualization International

Conference (IV 2007).

[6] Daniel A Keim. "Information Visualization and Visual Data Mining". In

IEEE Transactions on Visualization & Computer Graphics, Vol 7, Jan-

Mar 2002.

[7] Wikipedia. "The Long Tail" -

http://en.wikipedia.org/wiki/The_Long_Tail

[8] BellKor team, AT&T Labs Research. “Improved Neighborhood-based

Collaborative Filtering”.

[9] Ben Shneiderman. “Dynamic queries, starfield displays, and the path to

Spotfire”. Feb, 1999.

[10] “Collective Intelligence”, Toby Segaran, O'Reilly, 2007

[11] Netflix Prize Forum

[12] Jinni – http://www.jinni.com

[13] IMDb – http://www.imdb.org

[14] Mufin - http://www.mufin.com/

[15] Last.fm – http://last.fm

[16] Musicovery – http://www.musicovery.com

[17] Pandora – http://www.pandora.com

[18] Filip Gruvstad, Nikhil Gupta. “Netflix & IMDb for search based

recommendations”. For CS345a – Data Mining, 2009 at Stanford

University.

