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           Fig. 1. Shiniphy - Visualization & Interaction techniques highlighted in mockup

Abstract— An interactive visualization system for browsing results of a movie recommendation system is presented. The movie 

recommendations are based on collaborative filtering data mining techniques on Netflix Challenge dataset. The visualization allows 

for two way feedback, from the recommendation system to the user, and from the user to the system. The user can intuitively 

change the results of recommendations over time. Dynamic querying filters are also provided. 

Index Terms— visualization, data mining, interaction, collaborative filtering, recommendation system, feedback, Netflix challenge, 

search visualization. 

 

1 INTRODUCTION 

There are many online recommendation systems, like 
Netflix.com and Amazon’s similar-product recommendations, which 
show top results of a data mining back end. They generate thousands 
of recommendations, but are constrained to show only the top 3 or 4 
out of them. Other sites like Jinni and Pandora have more interactive 
and visually appealing results but these use datasets specifying the 
genome of the song/film which are painstakingly made by hand. 
Many a times these results are good, but they do not give any 
feedback as to why a movie is being recommended. Also, a user has 
no way of letting the site know that two movies do not seem related 
to her. 

We wanted to build a data mining system without going through 
the painstaking process of building a genome. We finally built a 
movie search and recommendation system which finds similar 
movies to the movie being searched for using Netflix prize’s dataset 
(something like Amazon's product recommendation system). This 
system uses both user ratings and metadata from IMDb to give its 
results. The visualization of the results enables the user to find out 
more about the results, filter them by several parameters (such as 
genre and production year). By having a strong data mining element 
coupled with usable visualization techniques we can enable effective 
and quick exploration of the results, by selectively boosting and 
dropping scores based on user queries. This report will focus most of 
its attention on the data visualization element. 

One very interesting possibility is giving the user the possibility 
to modify the results. Our system gives recommendations where the 
best matches end up closest to some point, if the user does not agree 
with this he/she can change it and the map is updated. Thus the 
results of the data mining will improve over time.  We also wanted 

the user to be able to participate in the mining process and the system 
to give feedback to the user why a certain movie was recommended 
(were they by the same director?). 

Our hope is that this system will make the users more interested 
in watching movies and can help them find titles they have never 
heard of. 

1.1 Motivation 

In the following paragraphs, we talk about problem visualizing large 
data sets, data mining, why a visualization system would be helpful, 
and how collaborative filtering (a type of data mining) can leverage 
such visualizations for item-item recommendations to exploit the 
“long tail”. 

The exploration of large data sets is a difficult problem. Though 
clever visualization techniques partly help to solve the problem, still 
sometimes it is easier for humans to look at computed patterns and a 
good visualization of the data to find more intricate patterns in the 
data. Thus, involving the user in the data mining process by pre-
processing the data using simple statistical techniques and then 
presenting the results to the user, visually, is a better idea. Integration 
of interactive visualization and data mining algorithms combines the 
intuitive power of the human mind with computational capabilities of 
the computer, thus improving the quality and speed of the data 
mining process. There is a company working towards this specific 
goal Palantir. 

In simple terms, data mining is the process of extracting 
important relationships and patterns from large amounts of raw data. 
For example, which two items are bought together the most (DVDs + 
Popcorn? Then give some offer on the combo). It is used in a number 



 

of different fields nowadays including marketing, detecting fraud and 
in scientific discovery like bioinformatics. However, data mining is 
not perfect, and many a times cannot beat human intuition.  

Also, it is not easy for a poorly informed end user, who is not a 
mathematician or computer scientist to interact with data mining 
system parameters and get useful results. They might even get results 
that are misleading or misinterpreted. Having a system which 
indicates why a particular pattern is being shown, and what the 
different parameters contributed towards that pattern would help the 
end user a lot, and make the system much more usable. Other factors 
like taking users' feedback in an intuitive manner and allowing for 
dynamically querying of results would help to solve this problem a 
lot. 

A modified definition of Collaborative filtering (CF) from 
Wikipedia is – it is a form of data mining system. The underlying 
assumption of CF approach is that those who agreed in the past tend 
to agree again in the future. It can produce personal 
recommendations by computing the similarity between users or 
items themselves, in a large set of data. It is the method of making 
automatic predictions (filtering) about the interests of a user by 
collecting taste information from many users (collaborating). For 
Shiniphy, we concentrated on item-item based collaborative filtering 
recommendation system.  

Enabling the user to explore a substantial number of 
recommendations quickly with dynamic filtering would allow a 
service provider to exploit the “Long tail” that exists in their 
products. “Long tail” suggests that 20% of the products account for 
80% of the sales. The remaining 80% of the products ("non-hits" or 
"long tail") account only for 20% of the sales, and it will be highly 
beneficial for the service providers if users start buying more from 
amongst the non-hits.  

1.2 Related Work 

In [6] the importance of having a visualization system for a data 
mining system is described. In [4], an approach for getting online 
data mining/CF is described, however, given the static data that we 
have, we realized that having a “tunable” backend would be better.  

The project that is most related to our work is [2] “Netflix Movie 
Explorer”. It can show posters of movies related to a particular 
keyboard. It is also based on the Netflix prize data set. However, it 
does not provide any way of giving feedback to or receiving any 
feedback from the system. There are several sites online that 
recommend movies and music; some interesting examples are [12]-
[16]. They all use some kind of recommendation system coupled 
with a visualization system. However, [13]-[16] lack do not give any 
feedback to the user about why a particular item is being 
recommended. Jinni [12] and Pandora [17] do that, but they use 
metadata created by hand. (See Fig 2) 

 
Fig. 2. Amazon and Jinni screenshots 

1.3 Data Available 

We got movie ratings from the Netflix dataset which contains over 
100 million ratings (along with the data when the rating was given 
ranging from Oct-98 to Dec-05) of 17770 movies by over 480,000 
different users. Furthermore this data has information about when the 
ratings are given and by which user. It does not however, contain any 
data about the movies other than which year they are produced, 
therefore we also chose to use IMDb’s extensive database to find 

additional information like genre and director. Since we could not 
find any publicly available dataset containing both Netflix and IMDb 
data we had to try matching these by title somehow. 

We ran some basic queries on it to get a better sense of what we 
were dealing with. We observed that there was a long tail in where 
we expected, like in the number of ratings per movie and the number 
of ratings per user. This data set is interesting because there were 
also some outliers in it, like 2 users who rated over 17,000 movies 
each. We could have removed such extreme cases and pruned the 
dataset to achieve incrementally better results, but we decided to 
focus more on the algorithms to get rid of such cases. Matching 
IMDb and Netflix titles turned out to be a difficult problem. We tried 
several things to find as many title matches as possible. We start of 
by doing some preprocessing like putting "The" at the end of a title. 
We then use IMDb’s "also known as" aka-titles list (which contains 
alternative titles for different movies). We removed the titles which 
had fewer than 100 ratings (to improve quality and speed since the 
aka list is very large). We then compared all the titles to the ones in 
the Netflix list and replaced possible aka titles in it with what IMDb 
perceived as an original. To compare titles we use Levenshtein 
Distance (counts number of deletions, insertions, or substitutions 
required to transform one string into another), length, year and some 
homemade shingles like comparison to see how many pairs of letters 
both strings contain. Then we compared this new list of titles with 
the full list of movies from IMDb and kept the pairs found (making 
sure the date is correct). This didn't give good enough results so we 
figured Google might be able to help. We made a simple web 
crawler that searches Google with site:www.imdb.com and all the 
titles that where untouched by the above algorithm. It then chooses 
the first result, scrapes it to get the date and other data and checks the 
date and string comparing and if the result is favorable adds it to the 
list. We got banned a couple of times for being a bot but got it to 
work after some time. Once the titles were compared and ready, the 
rest was easy. We finally were able to correlate around 70% of 
Netflix and IMDb data. 

For each of the 17,700 movies, we scraped an internet site to 
fetch the posters using a Python script. However, again was a slow 
process, as the server was again blocking us progressively. Finally 
we received all the posters from the author of the Gflix [2] site, 
Chaitanya Sai. We downloaded all the movie synopsis from the same 
site using our own script.  

2 METHODS  

For this project many elements were needed.  We have lots of data 
must be accessed and processed quickly. We also have a demanding 
visualization with many elements. As stated in [3] & [4], we 
designed the system considering the following factors –  
• It should be easy to implement and maintain, yet reasonably 

accurate - We used a simple aggregation formula and class 
architecture 

• The schemes should not rely exclusively on batch processing of 
data, so we stored good results of data mining in tables and 
made use of them in aggregation of scores efficient at query 
time: we used extra storage to speed up the execution type 

2.1 Visualization 

We considered many different options for the visualization that 
would lend itself the best for such kind of a system. More 
specifically, we considered a linear display, a graph-node tree 
structure, and a radial display. We also considered different kinds of 
encodings possible for different data in each of these visualizations, 
in size, color, distance, width, length, angle, overlap etc. 

We will now discuss the pros and cons of these different 
approaches and our final choice.  

A linear tree map display, with posters of different sizes binned 
according to relevance of the result, somewhat like Jinni, is what we 
wanted to build first. The biggest plus point of such a design is that 
humans are very quick at assimilating linearly displayed information. 



However, with this design, we soon realized that if the number of 
related movies in a particular bin was more than the number we 
could fit in, and then either we’d have to put those movies (wrongly) 
in a smaller poster size bin, or show it on the next page. Both would 
now be good, as we want the top results to be shown first and with 
same size. Also, if the user changed any dynamic query parameter, 
then the posters would not so pleasantly fly off in different 
directions. In case of interactive feedback from the user, we could 
not think of any simple way in which the user could tell the system 
that two movies were not so related or more related. Jinni [12] uses a 
linear treemap visualization, with poster size encoding the relevance 
of a recommendation. However we found that this visualization is 
not so effective for movie recommendation, as smaller posters are 
difficult to see, and it is very distracting to see the posters change 
size whenever any of the dynamic querying is applied. 

Next we considered a graph node structure, however this has the 
problem of wasting a lot of space, and drawing edges between 
“movie” nodes might encode some good information (like same 
year, or progression etc.) but it would not make sense intuitively to a 
user. This visualization also suffered with the user feedback problem 
discussed above. Musicovery [16] has a very interesting 
visualization, but the placement of the different songs on screen and 
their “relatedness” is not encoded in the visualization at all. 

Finally, we decided that a radial display, with the movie searched 
for at the center and recommended movies around it in a circle. Only 
around 10-15 movies can be shown at a time, and this is by design, 
as with anything more than this, the system looks too cluttered (and 
specifically since this is not a linear display). Also, this would in a 
way prompt the user to use the dynamic querying and feedback 
facilities provided. The distance of a movie from center of the circle 
encodes the similarity of the movie, so more similar movies are 
closer to the center. This is normalized for the movies displayed, so 
that the best recommendation is always at a fixed distance from the 

center (this also ensures that if there are no good recommendations, 
they stay on screen). The position of the posters is determined 
algorithmically. So that they do not overlap. This makes taking 
users’ feedback very easy, as they can just drag a recommendation 
closer to the center to say it is more related (in a fuzzy way) and 
farther away otherwise. (See Fig 3 & Fig 4) 
 
Here are some other features implemented – 
• Each movie can belong to multiple genres. For all the movies 

shown on screen, top 5 genres and rating (on a 5 star scale) are 
shown as icons along with the posters, this allows to quickly see 
if a movie is in the genre the user is searching for. Total 28 
genres available were binned into around 7 most popular 
categories (like “Horror” was grouped with “Thriller”). 

• We provide a quick statistic in microbars about the genres and 
Year of release of all the recommendations along with dynamic 
querying options on Year, Average rating of recommended 
movies & Genre. Based on these statistics, it is very easy to 
decide which year/genre the searched for movie belongs too, 
and which year/genre the user currently wants to focus on (by 
dynamic querying). 

• Genre similarity search – this slider gives feedback to the data 
mining system and changes the weight associated with the 
“genre clustering” score contribution. 

• To emphasize that movies closer to the center are more related, 
concentric circular rings have been drawn around the center 
with decreasing colour darkness. 

• Dynamic querying interactively changes the results being 
shown. 

• Feedback from the system, that is why a movie is being 
recommended is shown only on clicking an information button. 
This pops out an info box with a synopsis and different 
parameters that contributed to the movie being recommended. 

 
Fig. 3. Screenshot – showing the visualization when user searched for a movie “Target” 

 



 

• Two circular guide lines with some difference in their radius are 
drawn statically to aid in determining the distance of a 
recommendation from the center. 

• Major “genre” matches are segregated and placed together with 
the genre name written in bold in that area. This is redundant 
encoding of the genre information. 

• We chose not to use any other encodings in edges from center 
to the nodes, poster size, border size etc. to keep the system 
simple and non-cluttered.  

2.1.1 Efficient poster placement strategy 

Placing the posters efficiently on screen was an important task, so as 
to allow effective usage of the screen space, while also allowing the 
encoding of relatedness in radial proximity from center. First we 
tried using a force directed layout kind of structure, with posters 
bound to concentric circles and tangential forces placing them 
separately from one another. However, this did not work out to be 
that efficient, as FDL takes a lot of computational power on the 
user’s machine, and also because it does not allow much algorithmic 
control on certain parameters like group movies of similar genre 
together. So we tried an algorithmic placement strategy, in which we 
take around 100 movies and compute their theoretical radius (r) and 
angle (theta) values. If a node is overlapping with some other one 
already placed, then a simultaneous search commences in both the (r) 
and the (theta) spaces. This gave us good results, and also allowed us 
to group movies algorithmically, and consistently. 

2.1.2 Workflow & Interaction 

Interaction techniques implemented in the system include – 
• User searches for a movie – auto complete happen on the fly. 
• Selected movie shown at center of the visualization. 

• Feedback from the system in the info box and the microbars, 
and the distance from the center.  

• Dynamic querying. 
• User can drag and change radius of movie displayed to give 

feedback to the system. 
• User can say that two movies are not related at all by clicking 

the close button for a particular recommendation. 
 

2.2 Data mining 

An item-item collaborative filtering recommendation system is a 
“non-personalized” system as it doesn’t depend on the user profile. 
For example all users (not logged on) browsing a product on 
Amazon, web site see the same recommendations.  

In simple terms, it works as follows (from [3]) – In effect, given 
that the user is browsing item number 1, say, we are looking for 
items with ID “itemID2” such then: a sufficient large number of 
people (defined by a threshold) rated both item 1 and “itemID2” on 
average, we want “itemID2” to be rated as high as possible among 
users who also rated item 1. 

Finding similar movies requires lots of preprocessing of the data. 
Since this paper is more about visualization than about data mining, 
we just give an overview of the data mining techniques used and 
interested readers can read [18] for details of the data mining 
implementation –  

Residuals - Normalization technique to handle the inherent a user 
to user variability in ratings, some users are harsher while giving 
ratings, they’ll give a movie that they didn’t like a “1”, and some 
users would give such movies a “3” rating. 

Pearson Correlation score - It is a correlation score which 
calculates a similarity score for any pair of movie based on how 
common users have rated the two movies.  

 
Fig. 4. Screenshot – Showing the feedback from the system in the infobox when user clicks on a particular movie 

 



We ran code optimized for calculating the coefficient which 
indexed the ratings both by user and by movie and allowed for fast in 
memory lookups. We limited the size of the output file to around 
50Mb by calculating the Pearson correlation only when the overlap 
between two movies was over 50 movies, and clipped and kept the 
coefficients above a value of 0.5 only (determined by hit and trial on 
a smaller subset of the entire database). We did this because we 
wanted our visualization to be interactive and having a larger table of 
Pearson coefficients slowed down the querying too much. The 
results for Pearson alone are fairly good. We checked for around 5 
movies and could always see sequels in the result. There were cases 
where for a given movie; one movie with very few users in common 
had slightly higher correlation than correlation with other movie with 
many more users in common. To boost results with more overlap 
higher, we recalculated the similarity coefficient as = log(support) * 
(Pearson coefficient). 

Singular Value Decomposition – One of the most popular 
techniques for the matrix factorization is singular value 
decomposition or SVD. It decreases the dimensionality of the User X 
Movie matrix greatly, with little loss of information. Inherently, 
SVD rids us of noise and helps detecting the overall patterns in the 
data and helps in characterization of the structure. 

Clustering – Clustering is an easy way to make sense of high 
dimensional data. It groups similar items together. We applied 
clustering to a variety of different parameters which we then used to 
boost the final recommendation score.  
• We chose to cluster the SVD data because it was proving too 

slow to load all of it from the SQL database. The results were 
quite good, for example six out of eight Batman movies in the 
set ended up in the same cluster when we had 28 clusters. 

• We also clustered based on movies IMDb keywords. This data 
is very sparse but still managed some interesting results like 
grouping movies with similar themes, for example we found a 
cluster where over 50% of the movies where about space. This 
gave some good results, like all the sci-fi space related flicks 
ended up in the same cluster. 

• Finally we clustered on genres.  
 
For the different parameters we try several different amounts of 

clusters. This is useful for example if two movies are more closely 
related then they will continue to end up in the same clusters as the 
clusters get smaller. To do these things we used a clustering library 
called Cluto which required some pre-processing of the data but was 
then very easy to use. We tried different clustering methods and 
distance functions; our final method of choice was k-1 bisections 
with a cosine distance function, as this gave the best results 
observed. 

2.2.1 Blending the results 

Blending multiple results is one of the biggest challenges of our 
project. We have different parameters on which we can our match 
and boost our scores. We finally used a linear combination of the 
different parameters multiplied by weight for each parameter. This 
would allow our visualization to easily interact with the backend 
system and change the results, as the user wishes (suppose she wants 
to see more famous movies, then we just boost the weight for the 
parameter for movie support).  

 
The parameters we have are: 
• Clusters of different sizes based on Movie matrix (from SVD), 

Genres and Keywords. If the two movies are in the same cluster 
(genre, SVD, keyword) then boost its score. Boost more if they 
co-occur in a more specific cluster (two movies in the same 
cluster when we have 200 clusters are more important than 
when we only have 10 clusters). SVD should be boosted higher 
than the other two. The user should be able to decide how 
important the genres are. 

• Use the number of times the movie has been rated to boost up 
the results for more famous movies. In a similar way, adjust the 

Pearson score to account for the number of users in common 
between two movies. A movie that has fewer common users 
should be given a slightly lower weight. 

• IMDb average rating and Netflix average rating. We divide the 
ratings into different blocks of 0.5 from 1 to 1.5, 1.5 to 2.0 etc. 
and boost the scores for higher rated movies higher (uniformly 
in a particular block).  

• Number of times a movie has been rated (support).  
• For any Movie-Movie pair, the number of users in common 

who rated both the movies (support). 
• Year of release of the movie. 
• User suggestions for any set of recommendations. Users can tell 

the system that two movies are related to a higher degree or not 
related at all. This data will be stored on a table in the backend 
server with slow and incremental changes (so two movies do 
not become unrelated when only one user says so, this will 
happen only when a substantial number of users indicate the 
same). This table will also be used to calculate the similarity 
scores in future. 

 
Based on the value of these different parameters, users can learn 

why a particular movie was recommended to them and logic to 
change the weights for these parameters can be easily implemented. 
For example if we wanted the functionality to allow the user to 
control that more popular movies (with higher number of ratings) are 
shown higher up, then that is equivalent to providing a widget for 
changing the weight of the relevant parameter used for calculating 
the final similarity score. 

2.3 System architecture 

To make our visualization accessible and easy to use we want it to be 
available online but it must also have access to a database and be 
fast. Since our system needed to work interactively given any user’s 
queries, we stored the results of the different techniques on a 
MySQL server. As an intermediate step to the visualization we have 
a Java server which handles the actual SQL queries, this is good 
because Java is much faster than Flash. This also means that the 
results of some SQL queries which are small and frequent can be 
stored in memory on the Java server speeding things up further.  

 
Fig. 5. System architecture 

• On the front end we have a Flash/Flex based interface built 
using the Flare visualization library. 

• An interface middle level built in Java to interact with the 
MySQL server. This level was needed since Flex does not allow 
direct coupling with database. Also, having the interface in Java 
allows for much faster interface with the SQL server.  

• Backend MySQL server. This stores all the different results 
tables and allows us to access the data from front end in an 
efficient manner. Doing dynamic queries is much easier in this 
matter, as one just has to play around intelligently with SQL 
queries now. 

• The frontend flash application is connected to the data stored in 
the backed MySQL server via a Java server. This server 
precaches lots of the information needed to recommend movies 
and thus offloads the front end (which due to Flash is pretty 
slow) and backend (where data resides on disk).  

• The Flash application is connected to the middleware Java 
server via XML sockets. From it, it gets sorted lists of 
recommendations for which it then fetches movie posters, 
ratings etc. Each search also comes with some common 
statistics over common genres, ratings and production years. 



 

These are visualized as icons and microbars using Flare, and 
can be filtered upon using dynamic query sliders provided. 

• Tools & Languages used: Java, Flash, MySQL, Flex, M/R 
framework, Python, IMDbPy. 

 
Fig. 6. The Java server – “Recommendator” 

3 RESULTS  

Visualizations should be judged in the context of use. We found it 
difficult to judge the usability of this system ourselves, and even a 
small user study could not be conducted due to time constraints. 
Quantitative measures are difficult to estimate as we have not had 
any such test. We will present a few quantitative parameters that we 
could measure ourselves and informal user feedback that we could 
gather. 

3.1 Visualization - User feedback 

We made some informal observations at the final poster presentation 
day though, and present them over here –  
• People had needed to be explained that radial proximity 

indicated closeness. 
• Also the concentric circles were difficult for users to see. But 

we think it was because of: the screen angle and distance of the 
laptop. Also, the time spent by users on this was quite less. 

• We saw that once we explained the features to the user they 
could easily understand it and found it useful. 

• The few other users, who had issues understanding the system, 
were mostly related to the data mining part of it. However we 
feel that it was more out of curiosity about understanding the 
system, and we have successfully abstracted the user from 
knowing any details of data mining system and how it is 
implemented. 

• People suggested have to the ability to double click on a movie 
poster to make it the search movie.  

• People liked that we showed the genres on outer ring of (like 
drama, action). They didn’t pay much attention to genre icons. 
They also suggested that we should have more filters for future.  

 
In all, the user feedback was that our visualization was effective 

for the task at hand, and that it would decrease the time they needed 
to find interesting (and not so well known) movies, and make it 
easier for them to decide. 

3.2 Visualization - Quantitative measures 

The only quantitative measure that we measure effectively were 
running times, as this is supposed to be an interactive visualization 
system with three tier architecture, we needed the running time to be 
fast. To get our system running is a three step process, in the first 

step one needs to start the MySQL server, in the second the Java 
server and finally the visualization front end. We observed that 
MySQL started as soon as the server was rebooted, in around 1 
minute, and the Java server took around 2 minutes to start and pre-
fetch the basic information in its memory. However, these two would 
not need to be restarted in an ideal case, and the only time noticeable 
to users would be the visualization time. We accessed the 
visualization from two different PCs and observed that it never took 
more than 4-5 seconds to load the movie information and all the 
posters, so the visualization part is light weight, and uses minimal 
resources. This is a good result, as this shows our success in making 
the system close to real time, and providing a visual data mining 
system. 

3.3 Data mining results 

We first present the results for different methods we tried and then 
for the overall system – 
• Clustering on basis of SVD was able to group related movies in 

the same cluster, like 6 out of the 8 Batman movies were 
clustered together. 

• Keywords based clustering worked well too, while analyzing 
the clusters, we observed that most of the sci-fi space related 
movies (Star Trek, Star Wars etc) had clustered together. 

• Pearson correlation worked well out of the box, for most of the 
genre specific movies, it was able to give good 
recommendations. It was also able to catch sequels without fail. 

 
Again, it is a difficult task to evaluate something like movie 

recommendations; some people might like the system’s 
recommendations, others might not. It depends a lot on the person 
actually using the system. 
• We compared our results with Amazon’s movie 

recommendations. (However, Amazon’s database has >>17,700 
movies). 

• We checked recommendations manually for movies from 
Amazon. 

• On an average 5/20 movies were common in the 
recommendations by our system and by Amazon.  

• There were cases where: 
• Amazon was not able to make any recommendations for some 

movies like “Khakee” (a not so well known Bollywood movie), 
while our system did make good recommendations (Bollywood 
movies in the same Genre).  

• Most of the times both systems worked well, especially in 
comedy and action genres (Ace Ventura, Terminator). We also 
observed that Amazon weighs much more heavily on the Actor 
and Director information, while we do not use this information 
effectively yet.  

Our system did not work well in case of a hugely popular movie 
Titanic, and neither did Amazon’s (they recommended Forrest 
Gump). This is probably because so many people watch the block 
buster movies that they get grouped together (almost everyone we 
know has watched both Titanic and Forrest Gump). However, our 
visualization system can outperform Amazon in case the user selects 
to see less a lesser known movie. 

4 FUTURE WORK 

There are several improvements that can be made to the system – 
• One is to make use of other factors like actor, director and 

others.  
• It would be really interesting to apply our algorithm to a system 

like the one of Jinni.com where every movie is couple with 
extensive tagging.  

• Trying out other layouts that use space more efficiently while 
meeting our interaction needs would be important.  

• We can also try encoding the state of the system in the URL so 
that users can start over at the same point, or email 
recommendations to their friends.  



• Perform personalized recommendations (based on a particular 
user’s profile). Also, save their preferences for different 
parameters like genre similarity, average rating cutoff etc. 
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